子どもはどのように数学力を身につけていくか一数言語，数直線，および空間思考の役割一

```
カリフォルニア大学サンタバーバラ校
    教育学博士 岡本ゆかり
```


主な研究分野

認知発達（新ピアジェ派）

Okamoto，Y．（1996）．Modeling children＇s understanding of quantiative relations in texts：A developmental
言語と数学カとの関係
kamoto，
．
授業实践の国際比較（数学，理科）
Roth，K．J．，Druker，S．L．，Garnier，H．，Lemmens，L．，Chen，C．，Kawaka，T，Okamoto，Y，Rasmussen，D．，Trubacova，S． es：Results from the TIMSS 1999 Video Study of Eighth－grade Science Teaching US．Department of Eductios．
有理数（分数，割合）
siegler，R．，Carpenter，T．，Fennell，F．，Geary，D．，Lewis，I．，Okamoto，Y．，Thompson，L．，\＆Wray，J．（2010）．Developing valuation and Regional Assistance，Institute of Education Sciences，U．S．Department of Education．

小学 1 年生の二桁の数の認知，理解

Three Groups at Posttest

考察

－短期の介入で米国の 1 年生は 2 年生のような理解をしめした。
－数学言語に関する研究をふまてた授業介入で，子どもの数学力に影響を及ぼすことが可能で ある。

日本語は最適？

- 欠点 classifier system
- 日本語も韓国語も 2 つの数詞の数え方がある

言語と数学カとの関係

- 位取りの概念の理解
- 10をベースにした考え方
- 筆算のやり方
- 数の位置の見積もり

日本語は最適？
•欠点 classifier system
•日本語も韓国語も2つの数詞の数え方がある

輅国語の数詞の数え方

	1	2	3	4	5	6	7	8	9	10
I－K	hana	dool	set	net	dasut	yusut	ilgop	yudulp	ahop	yul
S－K	il	ee	sam	sah	oh	yook	chil	pal	goo	shib

10より大きい数

	11	12	13	14
	yyul－hana	yul－dool	yul－set	yul－net
$S-K$	shib－il	shib－ee	shib－sam	shilb－sah

	20	25	35	45	
	sumul	nuld	heun－1	helln－	
	eershio	－hibo	m．shil	迷	

図形の名称と図形の特徴の理解

- 三角形－triangle
- 正方形－square
- 長方形－rectangle
- 台形－trapezoid
- 五角形－pentagon
- 三角柱－triangular prism
- 四角錐－square－based pyramid

Preschoolers＇Intrinsic Spatial Reasoning

\checkmark How do children do on the 5 measures （relations）？
－Mostly expected but some unexpected
\checkmark Is familiarity a factor？
－Context matters
\checkmark Any demographic factors？
－Early entry to preschool matters

Preschoolers＇Intrinsic Spatial Reasoning

－ 45 children（22 girls）
－ 4 years 6 months
－ 5 measures
\checkmark How do children do on the 5 measures （relations）？
\checkmark Is familiarity a factor？
\checkmark Any demographic factors？

Demographic Factors？

－Only gender difference
－Girls＞Boys on the Puzzle task
－Only maternal education difference
－Graduate School＞High School on the Embedded Figures Test
－Age of preschool entry
－Earlier＞Later on all measures

空間理解と数学力

＂The relation between spatial ability and mathematics is so well established．．．＂
（Mix \＆Cheng，2012，p．206）
例えば．．．

$$
\begin{aligned}
& \text { - メンタル回転 -> SAT-M (Casey, Nuttall, Pezaris, \& Benbow, 1995) } \\
& \text { - 空間メカニカル思考 -> 数学カテスト } \\
& \text { (Casey, Nuttall, \& Pezaris, 2001) } \\
& \text {-メンタル回転 -> 数の位置の見積もり-> 概算 (Gunerson, Ramirez, Beilod } \\
& \text { \&Levine, 2012) }
\end{aligned}
$$

アメリカのカリキュラム
Common Core State Standards幾何

- 幼稚園の年長さんは．．．
- 図形を識別，説明できる

一複合された図形を分析，比較，そして作ること ができる

- 小学校の一年生は．．．
- 龱形えその特徴について理由付けすることが

小学校一年生は

図形をどのように理解しているか
参加者
一年生 36名（女児20名）
課題
図形の分解と合成

Hallowell，Okamoto，Romo，\＆La Joy（2015）

子どもの図形の理解？

－メンタル回転課題
Casey et al．（2008）

－空間スパン課題
Crammond＇s（1992）

算数，数学の授業で空間思考力を育む必要性

- 空間思考力は指導次第で伸びる
- 種々の授業介入で空間思考力の伸びが確認されている
－コンピューターゲーム
－折り紙
－パズル
- 絵を描く
- ブロック使用

